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Abstract

The transient response of the direct methanol fuel cell (DMFC) with liquid feed will be of particular importance in transportation
applications. To achieve effective control of a commercial system it is important to develop a methodology that accurately predicts
the stack voltage using a small number of sensors. An experimental study of the dynamics of the direct methanol fuel cell is
described and used to develop an empirical model of the cell dynamics. Two cell systems, a small-scale single cell and a three-cell
stack, form the basis of the experimental study. The cells were subjected to a range of dynamic loads and operating conditions.
Empirical dynamic models were then developed, using state space canonical variates analysis, to predict the voltage response of
the two systems from measurements of cell voltage and current. The models provided acceptable inferential and one-step-ahead
predictions of the dynamic voltage response even though the systems never attain steady-state operation. © 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

In recent years interest in fuel cells for applications
in transport and small stationary power systems, for ex-
ample, has increased. This interest has primarily been
as a result of the breakthrough made in polymer elec-
trolyte membrane fuel cells (PEMFC) using hydrogen
as the ‘clean’ fuel. However, the use of hydrogen raises
issues concerning the safe transportation and storage of
the fuel. An alternative approach is to reform/oxidise a
liquid fuel to hydrogen in situ. This approach raises is-
sues of overall system size, cost and operation. Conse-
quently a cell that can directly oxidise a liquid fuel, e.g.
methanol, methoxymethanes, formic acid, methyl for-
mate, and ethanol is attractive. A requirement of the fuel
is that, on oxidation, a clean combustion to carbon dioxide
is achieved. With anticipated temperatures of operation
of around 100°C, the choice with currently available elec-
trocatalysts is limited to simple fuels such as methanol.

* Corresponding author. Tel.: 44-191-222-8771; fax: 44-191-
222-5292.
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The direct methanol fuel cell (DMFC) based on a solid
polymer electrolyte, typically operates at relatively low
temperatures (< 130°C) with methanol as either vapour
or liquid. The electrode reactions are

anode: CH30H + H,O — 6e~ + 6H' + CO,, (1)
3 - +
cathode: 502 + 6e” + 6H" — 3H,0, 2)

which can be combined to give the overall reaction
3

Research into the DMFC has generally focused on
steady-state behaviour and small-scale operation with
emphasis on catalyst, solid polymer electrolytes and
membrane electrode assembly development (Wasmus &
Kuver, 1999).

With commercialisation of DMFC technology not
anticipated until around 2008, engineering aspects of
the system have been largely neglected in favour of
small-scale cell development. This has resulted in lim-
ited research into the dynamics of DMFC operation, in
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particular start-up and shut-down. An investigation of the
dynamics of the DMFC to assess the cell voltage response
to continuously varying, or arbitrarily applied, current
loads has recently been reported (Argyropoulos, Scott, &
Taama, 2000a,b).

Knowledge of the dynamic behaviour of fuel cells,
stacks and systems for vehicular applications is critical to
their design and engineering. A number of publications
have considered the dynamics of fuel cells other than
the DMFC (e.g. He, 1998; Kortbeek, DeRuijter, Hagg,
& Barten, 1998; Miki & Shimizu, 1998; Lee, Lalk, &
Appleby, 1998; Van Bussel, Koene, & Mallant, 1998;
Wohr et al., 1998; Bevers, Wohr, Yasuda, & Oguro, 1997;
Amphlett, Mann, Peppley, Roberge, & Rodrigues, 1996;
Hauff & Bowlin, 1995; Costamagna, Arato, Achenbach,
& Reus, 1994; He, 1994a,b; Appleby, 1993). Most of
these approaches were based on the deterministic mod-
elling of experimental data and were system specific.
There has been limited published data on the dynamics of
the DMFC. A brief discussion of the dynamic behaviour
of a small DMFC stack has been reported using cur-
rent pulse operation (Valdez, Narayanan, Frank, & Chun,
1997). In a number of publications, observations on dy-
namics have been made, but these mainly relate to the
duration of the experiments carried out on working cells
(e.g. Ren, Wilson, & Gottesfeld, 1996; Hogarth & Hards,
1996; Scott, Taama, & Cruickshank, 1996; Narayanan
et al., 1996a,b). The dynamics of fuel cells, in particular
the DMFC, are complex and are therefore extremely chal-
lenging to model. The dynamic response of the DMFC
depends on a number of factors including:

e The electrochemical response of the anode and cathode
reactions.

e The charging characteristics at the interfaces between
the electrode, electrolyte and solid polymer membrane.

e The mass transfer of methanol to the catalyst sites
through the diffusion layer and catalyst region.

e The mass transfer of methanol through the membrane,
which influences the performance of the cathode due
to a mixed potential.

e The mass transfer of oxygen to the cathode.

e The production and transport of water at the cathode
electrocatalyst layers.

e The production of carbon dioxide and its release from
the anode catalyst layer.

e The two-phase flow of methanol solution and carbon
dioxide gas through the anode diffusion layers.

e The hydrodynamics of the two-phase flow of methanol
solution and carbon dioxide gas in the flow bed.

e The variation in heat release and temperature response
of'the cell components which affect local reaction rates,
vaporisation (or condensation) of methanol (and wa-
ter) between the liquid and gas phases, local humidifi-
cation conditions and local operating parameters.

e The size and scale up of DMFC stacks.

The effect of many of the above factors on the dynamic
response of the cell are interactive and will depend on
the current load applied to the cell, the speed of load
changes and the previous history of the load variations
in the overall cycle imposed. The development of a de-
terministic model which incorporates the above factors
to predict the dynamic response of the DMFC for use in
cell and system control is extremely demanding. There-
fore the intention of this paper is to develop an empirical
dynamic model for the inference and one-step-ahead pre-
diction of the voltage response from a limited number of
sensors (voltage, current and perhaps temperature). The
ultimate aim is to identify a simple and robust method for
cell control. Experimental data was collected from two
systems, a single small-scale DMFC and a three-cell stack
(816 cm? total active area). The initial objective was to
develop a model for a particular set of operating condi-
tions for each of the two systems. The models were then
validated against other data sets collected from the same
system, but operated under different conditions.

The basis of the modelling work was the multivariate
statistical technique of state space canonical variates anal-
ysis (CVA) (Larimore, 1983). The advantage of CVA
state space modelling is that no a priori knowledge of the
system parameters, dynamics, or time-delays is required.
CVA was first applied to the data and pseudo-states of
the system were calculated. These pseudo-states are fair
approximations of the true states of the real system since
they are “optimal” predictors of the future outputs. Here
“optimal” implies that the prediction error is minimised.
The pseudo-states were then used to develop a state space
model considered as the most general representation of
a linear time-invariant system. It is thus considered rea-
sonable to use such a CVA based model to describe both
the steady state and dynamic operation of the DMFC.

The overall objective of this paper is to report a CVA
based model that predicts the dynamic response and that
forms the basis of a control methodology for DMFC stack
power trains which requires a minimal number of sen-
sors. In the second part of the communication (Simoglou
et al., 2001) the study is extended to assess the ability
of the model to predict more complex scenarios, includ-
ing scale-up and scale-down, where major differences in
operating strategies existed. More specifically, the CVA
model of the small-scale cell was used to predict the
three-cell stack response and vice versa.

2. Experimental studies

The small-scale cell has an active cross-sectional area
of 9 cm? and consists of a one membrane electrode as-
sembly (MEA) sandwiched between two graphite blocks
with flow paths cut out for methanol and oxygen/air
flow. The flow bed comprises a series of 10 paral-
lel channels, 2 mm deep x 2mm wide every 1 mm.
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Fig. 1. Large-scale cell flow bed design.

Electrical heaters, placed behind each of the graphite
blocks, heat the cell to the desired operating temperature.
The graphite blocks were also provided with electri-
cal contacts and holes to accommodate thermocouples.
The fuel cell was operated in a simple flow rig which
provided a temperature-controlled supply of aqueous
methanol solution circulated with the aid of a peristaltic
pump. Pressure regulated air was supplied from cylinders
at ambient temperature. Further details of experimental
equipment, MEA fabrication and operating procedures
can be found in Argyropoulos, Scott, and Taama (1999).
The three-cell stack was based on a large-scale flow bed
design shown in Fig. 1 (Scott, Argyropoulos, & Taama,
2000). The flow bed consists of a main flow region of
57 parallel channels and two triangular inlet/outlet sec-
tions, 40 mm long with a series of 4 mm? spots. Lig-
uid and gas feeds and product liquid and gas mixtures
are supplied/removed in an internal reverse type circu-
lar cross-section manifold. Individual cells are connected
electrically in series using the graphite bipolar plates.
The fuel cell stack was operated within a flow cir-
cuit that provided a controlled rate of fuel and oxidant
flow. The necessary heat load for stack start-up and for
replenishing the heat losses was provided by an in-line
1.25 kW heater, controlled by an embedded thermocouple
and an external PID temperature controller, that heated
the methanol solution. Anode side exhaust gas and ex-
cess feed pass through a specially designed gas liquid
separator. From the separator, the liquid flowed to the
main reservoir where the gas was vented though a glass
condenser to recover the vaporised methanol. A com-
pressor provided the required air quantity at the desired
pressure for the cathode. Two flow meters with precision
valves were used to control the air supply. The cathode
side exhaust gas was passed through a tank to collect the
water separated from the air by a condenser on the top

of the vessel. A precision valve at the top of the con-
denser controlled the cathode compartment pressure. For
cold start-up, the necessary heat was provided by a pair
of heating plates adjacent to the two end graphite plates.
Further details of experimental equipment can be found
in Scott, Argyropoulos, and Taama (2000).

3. Direct methanol fuel cell performance and
operating characteristics

In automotive applications, fuel cells can be used in hy-
brid configurations with, for example, batteries allowing
the cells to be operated at steady state with high-power
output under optimised conditions, and with the peak
power demands being met by the batteries. Alternatively
the fuel cells can be used as the sole power supply to min-
imise the vehicle’s weight. The second case represents a
dynamic situation in which sudden load application can
be considered as the worse case scenario. Hence in the
development of a model for the prediction of the volt-
age response, under variable load conditions, these cycles
were considered as the limiting case.

A brief description of the effect of operating condi-
tions on the voltage response of the direct methanol fuel
cell (DMFC) is given in this section. At steady state, cell
voltage at a fixed current density, increases with an in-
crease in cathode air pressure and temperature of the cell
and/or methanol solution. The effect of methanol concen-
tration influences the cell voltage in several ways. First
methanol concentration has a non-linear influence on an-
ode kinetics through the complex reaction mechanism
when a zero-order dependance on rate is approached at
high concentrations. An increase in methanol concentra-
tion improves the mass transfer on the anode side whilst
also increasing the methanol crossover to the cathode
through the solid polymer electrolyte. As methanol is ox-
idised at the cathode side catalyst layer, a mixed potential
results which reduces cell voltage. The effect of methanol
solution flow rate is a complicated issue and depends on
the operation of the DMFC system. In principle there are
three ways of operating a DMFC cell: cold methanol so-
lution is supplied to a continuously heated cell, preheated
liquid is supplied to an unheated cell and a combination
of both. Although the exact details of the processes oc-
curring in these three cases is beyond the scope of the
present text, altering the mode of operation can have a
major impact on the cell voltage (Scott, Taama, Kramer,
Argyropoulos, & Sundmacher, 1999). In practice how-
ever, a commercially viable DMFC would be operated
with only the feed preheated (or potentially cooled) be-
fore cell entry.

In addition to the operating variables, flow bed design
and its accompanying heat and gas management charac-
teristics can cause significant variations in the cell dynam-
ics and voltage under varying load characteristics. The
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dynamic cell voltage response is significantly affected by
the methanol solution flow rate, methanol concentration
and cathode air pressure (Argyropoulos, Scott, & Taama,
2000a,b). Variations in voltage response are due to many
phenomena, but methanol crossover from anode to cath-
ode is a significant factor. In addition, in practical DMFC
operation, the input of methanol solution at a tempera-
ture below that of the cell will cause dynamic interactions
between the operating temperature of the catalyst region
and methanol flow rate.

The data sets used in this study were collected under
all three modes of operation listed above and over a wide
range of operating conditions to examine the global nature
of the model. In addition, the cells were operated over the
full response region covering both the “activation” (low
current) and “limiting” current regions. In this way the
model developed could be applied over the whole range
of the DMFC voltage response curve.

4. Control requirements for solid polymer electrolyte
cells

For commercialisation of the direct methanol fuel cells,
it is important to develop control strategies for large
multi-cell stacks installed in power automotive trains.
Up to now the main application of fuel cells has been
for steady-state power generation applications. “Tradi-
tional” process control techniques have been applied with
relatively simple control structures. Transient operation,
including start-up, shut-down and efficient transition be-
tween operating conditions, has not been a major concern
compared with the optimisation of steady-state condi-
tions. An issue that needs to be addressed is the trade-off
between the complexity of control system technology and
the ability to handle transient conditions. The objective
is to design a control structure that keeps the measure-
ment needs simple and leaves open the possibility of good
transient control. Many of the control techniques studied
are based on the installation of a large number of ex-
pensive sensors. This approach has had limited success
in hydrogen-based systems. In contrast manufacturers of
prototype systems now require techniques that rely on
a limited number of sensors in order to reduce the sys-
tem cost. In addition these sensors need to be similar,
if not identical, to those currently used in modern cars.
Through the identification of an acceptable control sys-
tem, a balance between component performance and the
initial cost of the system, which is vital for ensuring the
economic viability of the new generation vehicles, might
be achieved. The control architecture at both the compo-
nent and system level will be model based and opens the
possibility for a co-design of the cell control system and
associated fault diagnosis.

Currently, for both methanol and hydrogen-based fuel
cells, there is no simple, reliable and global technique

for voltage prediction. Some attempts have been made to
model the system but might be described as being either
system (and design) specific, or semi-empirical based on
the existence of experimental data. Scott, Kraemer, and
Sundmacher (1999) presented a steady-state determinis-
tic model for the prediction of cell voltage output. This
model, however, needs a large number of parameters (to
be experimentally defined) and would be difficult to adopt
in a simple controller unit for automotive applications.
Kim, Lee, Srinivasan, and Chamberlin (1995) presented
an empirical equation for voltage prediction of a hydrogen
fuel cell but failed to correlate the equation constants with
the system’s operating conditions. More recently this has
been addressed (Scott, Kraemer, & Sundmacher, 1999)
but the model still requires a significant amount of exper-
imental effort to obtain the system parameters. Amphlett,
Baumert, Mann, Peppley, and Roberge (1995) used a cor-
relation approach based on coefficients that were depen-
dent upon theoretical, empirical and experimental data.
Such modelling approaches are not sufficiently flexible to
be incorporated into programmable controllers, and are
mainly system specific relying on a large number of user
inputs and a large number of sensors providing on-line
data.

5. Canonical variate analysis-based state space
modelling

Canonical variate analysis (CVA) state space mod-
elling has previously been applied to a variety of sys-
tems. For example Peloubet, Haller, and Bolding (1990)
developed a CV A state space model for the on-line adap-
tive model predictive control of an unstable aircraft wing
flutter. Negiz, Ramanauskas, Cinar, Schlesser, and Arm-
strong (1998) developed statistical process monitoring
tools based on a CVA state space model and applied them
to a high temperature short time pasteurisation system.
CVA state space modelling has also been applied to an
industrial fluidised bed reactor for the prediction of the
quality parameters of the system (Simoglou, Martin, &
Morris, 1999). In these studies it was shown that CVA
could provide a reliable representation of the underlying
system.

The concept of state space modelling is based on
describing a system in terms of k first-order difference
equations which are combined into a first-order vector—
matrix difference equation. The state space model has
been widely applied in the design of control systems
since the approach is multivariable and enables the inclu-
sion of initial conditions into the analysis. A stochastic
state space model, in its most general form, has been
defined by Larimore (1983)

Xp1 =Fx, + Gu, + wy, “4)

YI - HXt + Allt + BW, + e[, (5)



A. Simoglou et al. | Chemical Engineering Science 56 (2001) 6761-6772 6765

where X, uand y are the system states, inputs and outputs,
respectively. F (k x k) is the state matrix, G (k x nu) is the
input matrix, H (ny x k) is the output matrix and A (ny x
nu) is the direct transmission matrix. The terms k, nu and
ny denote the dimension of the state, input and output
spaces. The terms w and e denote noise processes that
are assumed to be independent and identically distributed
(i.i.d), with covariance matrices Q and R respectively.
The noise Bw, + e, in the output Eq. (5) is correlated
with the noise w, in the state Eq. (4). Larimore (1997)
argued that requiring that the noise processes in Eqgs. (4)
and (5) to be correlated results in minimal realisation. If
the state, input and output variables are known, then the
state space matrices, F, G,H, A, B, Q and R are given by
the least-squares solution, Larimore (1983).

A number of multivariate statistical algorithms have
been proposed to approximate the real system states,
x. The most popular statistical methods for identifying
state space models are partial least squares (PLS) (e.g.
Simoglou, Martin, & Morris, 1999; Negiz & Cinar, 1997)
and canonical variate analysis (CVA) (Larimore, 1983).
The major advantage of PLS and CVA are that they
define the major sources of variability in the measured
variables by projecting them onto a lower dimension or-
thogonal subspace. This orthogonal subspace is spanned
by the so-called latent variables that are linear combina-
tions of the original process measurements. Comparing
the properties of this latent space with those of the state
space, the latent variables obtained from the application
of PLS and CVA can be considered as a fair approxima-
tion of the states. A number of researchers have inves-
tigated and compared the application of PLS and CVA
state space models (e.g. Simoglou et al., 1999; Negiz
& Cinar, 1997; Juricek, Larimore, & Seborg, 1997) and
have concluded that CVA outperforms PLS in terms of
providing a more accurate representation of the system
using fewer identified parameters. This is particularly im-
portant in real-world applications.

The approximation of the states using canonical vari-
ates analysis was proposed by Larimore (1983 ) based on
the pioneering work of Akaike (1973). Larimore intro-
duced the notion of the past, p, and the future, f, at time
t:

p(O)=[y"(t—1),y'(t-2),...,
u'(r—Du"(r-2),...1%, (6)

f(O=0"0)y ¢+ 1),...1" (7)

The past vector, p, is defined in a similar way to that of the
P matrix for AutoRegressive with eXogeneous (ARX)
time-series variables modelling. The future vector, f, in-
cludes future values of the outputs associated with time ¢.
The problem is now one of identifying the optimal linear
combinations of the past for use in “predicting” the fu-
ture evolution of the process. Larimore (1983) proposed

applying canonical variates analysis between the past
vector, p, and the future vector, f, such that the canon-
ical variables corresponding to the vectors p and f are
calculated so that the correlation between them is max-
imised. This results in good predictions of the system
outputs.

In CVA two sets of parameters need to be selected,
the number of past measurements required to predict the
future evolution of the system and the number of CVA
pseudo-states. Although the issue of model order selec-
tion has been well explored in the literature with many
techniques having been proposed, in the CVA state space
literature it is common practice to rely on just one cri-
terion to select the various system orders, for example
Akaike information criterion (AIC) (Akaike, 1973). In
practice however, it is not advisable to rely solely on just
one criterion for selecting the model. For example AIC
is known to overestimate the order of an autoregressive
(AR) model of finite order (Shibata, 1976). In this paper
nine criteria were examined to help determine the vari-
ous system orders, Akaike information criterion (AIC),
final prediction error criterion (FPE), Bayesian informa-
tion criterion (BIC), law of iterated logarithms criterion
(LILC), normalised residuals sum of squares (NRSS),
multiple correlation coefficient (R?), adjusted multiple
correlation coefficient, (R2), Overall F-test of the loss
function (OVF) and Mallow’s statistic (C,). A review
of these model order selection criteria can be found in
Haber and Unbenhauen (1990). In contrast to previous
approaches to CVA state space modelling, each variable
may involve a different number of past measurements to
predict the response of the system (Simoglou, 1999).

6. Application of canonical variates analysis state
space modelling to the direct methanol fuel cell

CVA state space models were developed to provide
both inferential estimates (the prediction of the system
output at that moment in time) and one-step-ahead pre-
dictions of the cell voltage output. The operating condi-
tions for the experimental data sets for the two fuel cell
systems are summarised in Table 1. Associated with each
set of operating conditions were different loading cycles,
i.e. varying patterns of applied current density, as shown
in Fig. 2. Load cycles A-D relate to loadings applied
to the single cell, whilst E and F were applied to the
three-cell stack. Three of the load cycles (A, E and F)
simulate situations that are likely to occur when driving
a vehicle on a motorway, whilst load cycle B relates to
the case of medium to high-power demands continuously
varied with no cell relaxation (i.e. zero load). Structured
loads with load pulses of various magnitudes followed
by cell/stack relaxation prior to reloading were also in-
vestigated. Pulse performance as shown in Fig. 2C and
D is important for many applications such as communi-
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Table 1
Operating conditions for the DMFC experiments
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Operating conditions\data set Data set Data set Data set Data set Data set Data set
(A) (B) ©) (D) (E) (F)
Solution concentration (M) 2 1 0.25 2 1 1
Cathode pressure (bar) 2 0.5-2 2 2 1.4 1.7
Cell temperature (°C) 64-71 79-81 85 80 63-71 43-74
Methanol inlet temperature (°C) 80-90 51-54 50-55 51-57 6677 43-76
Methanol outlet temperature (°C) 69-79 — — — 68-78 40-72
Air inlet temperature (°C) — — — 22-23 21-29
Air outlet temperature (°C) — — — 36-50 29-54
Anode flow rate (cm?/min) 150 5-15 10 15 3500 5500
Total active area (cm?) 9 9 9 9 816 816
Number of cells 1 1 1 1 3 3
Applied current density (mA/cm~—2) 5-70 0-200 0-100 0-200 18-76 18-76
Number of data points 13912 9502 3630 766 11288 6908
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Fig. 2. Current density load cycles.

cation equipment, emergency back up power supply, and
electric vehicles.

Two variables formed the basis of the dynamic empir-
ical models. The cell/stack output voltage and the input
applied load i.e. cell/stack current density. The first step
in the model identification procedure was to select the
number of past values required to build the CVA state
space model. For the small cell, five values were required
for the past values of the voltage and the current, with ten
CVA pseudo-states being retained in the model. For the
large-scale stack, the CVA state space model comprised

five past values of the voltage and seven past values of the
current, with eleven CVA pseudo-states being retained.
The next step was to validate the assumptions associ-
ated with the output residuals, e, i.c. that they are seri-
ally independent and normally distributed. Fig. 3 shows
the autocorrelation function of the output residuals. From
this plot, it can be concluded that the residuals were se-
rially independent. From Fig. 4, it can be seen that the
voltage prediction errors represent a zero-mean, normally
distributed process thus the residuals satisfy the under-
lying assumptions. Based upon this assessment, it was



A. Simoglou et al. | Chemical Engineering Science 56 (2001) 6761-6772 6767

0.8 \
0.6 \
\

0.4} \ J

-0.2 ]

-0.4f

-0.6 i

Autocorrelation Function

0.8 b

Fig. 3. Autocorrelation function of the output residuals (data set C).

3000

2500

2000

1500 -

Frequency

1000 ]

500

-6 -4 -2 0 2 4 6
x10°

b

Residuals

Fig. 4. Histogram of the output residuals (data set C).

concluded that the CVA state space model provided a
good representation of the small DMFC. Similar results
(not shown) were achieved for the three-cell large scale
stack.

In model development it is important to validate the
model against data sets for different operating conditions
to those on which the models were built. The accuracy for
the inferential estimates and one-step-ahead predictions
based upon data set C are given in Table 2 for both cells.
Data sets A—D relate to results for the small cell where
the model was built on data set C and validated on data
sets A, B and D. For the three-cell stack, the model was
developed on data set F and validated on data set E.
Prediction accuracy is defined as

(1 _ i (i — }A’,)> A
Vi

where y is the actual measured value, y is the estimated
value and #» is the number of data points. The model
accuracy for the inferential estimates is high with val-
ues being in excess of 96% for all data sets. Compared
to the inferential estimates, the prediction accuracy for
the one-step ahead predictions were poorer by between
0.23% and 1.77%. In general the differences in all the
results can be attributed to the differences in the experi-
mental conditions.

Initially the study focussed on data-set (A), generated
from the small-scale DMFC cell. Previous studies on this
cell (Argyropoulos, Scolt, & Taama, 1999) have identi-
fied relatively poor heat transfer characteristics and sig-
nificant gas management problems. The cell was operated
with preheated feed only. The elevated cathode pressure
coupled with the 2.0 M aqueous methanol solution used
enhanced the response of the cell to variations in the ap-
plied load. Fig. 5 is a plot of the inferential estimates ver-
sus the actual values for data set (A) with Fig. 6 providing
the resulting time-series plot for data set (A) based on the
model developed from data set (C). Figs. 7 and 8 show
scatter plots of the one-step-ahead predictions and the ac-
tual values and the time-series plot of the one-step-ahead
predictions, respectively. The results demonstrate that the
model gives acceptable predictions even though the cell
was not operated under steady state conditions, i.e. it had
not reached steady state thermal conditions. This is in
contrast to the constant cell temperature in the case of
reference data set (C). The more concentrated methanol
solution, 2.0 M (as opposed to 0.25 M for data set (C))
was expected to enhance the methanol crossover through
the polymer electrolyte membrane rate leading to greater
cathode side polarisation and thus reducing the cell volt-
age and slowing the dynamic response, whilst improving
anode side mass transfer. The relative balance between
these two mechanisms was found to dictate cell response
time (Argyropoulos et al., 2000a). Increasing the liquid
phase flow rate by an order of magnitude in data set (A),
was expected to have less of an impact on dynamic re-
sponse since it enhanced gas removal compared to that
with the lower flow rate used for data set (C). At the same
time lowering the reactants supply rate increases the cell
response time (a gas blanket can form on the surface of
the MEA which can lower the reactants penetration rate).

The second data set, (B), relates to the small-scale cell
heated to 80°C with a 1.0 M methanol solution at 51-54°C
(the feed was not preheated). Initially the cell was oper-
ated with low air flow rate and pressure resulting in cath-
ode flooding which causes the performance of the cell to
deteriorate rapidly (Valdez, Narayanan, Frank, & Chun,
1997). In practice every time a water droplet was flushed
from the cell, a large fall in cell voltage was recorded.
This behaviour is observed in Fig. 9. These points are
those that lie away from the 45° diagonal. Fig. 10 illus-
trates the resulting inferential estimates for data set (B)
for the case where the results were developed from the
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Table 2

Accuracy of inferential estimates and one-step-ahead predictions of the six data sets

Data set

Data set Data set Data set Data set Data set
(A) (B) ©) (D) (E) (F)
Inferential estimates (%) 96.60 97.53 98.25 96.53 99.39 99.15
One-step-ahead predictions (%) 95.41 96.65 98.02 94.76 98.99 98.64
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model built using data set (C). The results are accept-
able even though clear differences exist between the two
sets of operating conditions. During the experiment, the
anode side flow rate and the applied load were changed
three times and the cathode pressure was changed four
times. The cell was operating in an unstable mode, with
significant voltage variations and step changes in oper-
ating conditions; cathode side pressure was varied from

Actual Values

Fig. 7. Actual values versus one-step-ahead predictions for data set
(A).
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Fig. 8. One-step-ahead predictions of data set (A).

the initial value of 0.5 bar to the final value of 2.0 bar
and the anode side inlet flow rate was varied over a range
of 5to 15 cm® min~'. A 1.0 M methanol concentration
was found to optimise the specific cell dynamic response
(Argyropoulos, Scott, & Taama, 2000a) and gives a sig-
nificantly shorter response time compared with the dilute
0.25 M solution used for data set (C). Finally the applied
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current density range increased from 0 to 100 mA cm ™2,

for data set (C), to 0 to 200 mA cm 2, for data set (B).
The one-step-ahead predictions generated for data set B,
using the model built on data set (C), exhibited very sim-
ilar behaviour to that shown in Fig. 10.

The third data set, (C), is particularly challenging
from two aspects: (i) the methanol solution used is di-
lute (0.25 M) which leads to a relatively slow voltage
response especially at higher current densities where the
cell suffers from mass transfer limitations, and (ii) it had
been found from previous studies (Argyropoulos et al.,
2000a,b) that cell relaxation (i.e. cell unloading between
two successive load applications) significantly affects the
cell response, i.e. the cell voltage rises to levels greater
than the initial (or steady sate) open-circuit voltage.
The third and the fourth data sets (C and D) are worst
case scenarios as they represent sudden applications of
various power demands. In general such variations in
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Fig. 11. One-step-ahead predictions of data set (C).

load, i.e. current density, would not be imposed on a
cell or stack used for automotive applications. In driving
cycles currently used for car certification world wide,
the demands on an automotive power source are more
relaxed. It is not a prerequisite of the power source to
respond to pulses from zero-load to, 50—75%, of the
maximum power output. On the other hand such cases
provide a challenging way to test the system. The model
predictions for data set (C), Table 2, for the inferred
predictions (98.25%) and the one-step-ahead predic-
tions (98.02%) are, as expected, adequate since this
data set was used to build the model. The agreement
between model one-step-ahead predictions and experi-
mental data is shown in Fig. 11. This behaviour is also
reflected in the scatter plot of the actual values versus
the inferential predictions and the one-step-ahead results
(not shown).

Consider now the predictions for data set D from the
model built from data set (C). The difference between
data sets (C) and (D) lies in the cell relaxation time,
i.e. the time interval without load between two succes-
sive loading periods. In data set (D), the time interval
was reduced from 180 to 30 s. The implication of this is
that, in the case of data set (D), the physical processes
of mass and heat transfer, and gas removal may not have
reached a steady state before the next pulse is applied.
In addition data set (D) includes a large number of sys-
tem excitations over a wider range of current densities
(0—200 mA cm~2) compared with the two different ex-
citations at 50 and 100 mA cm ™2 used for data set (C).
It has previously been shown that the cell response pat-
tern is significantly affected by the magnitude of the ap-
plied current density (Argyropoulos et al., 2000b). Over-
all, considering that the solution concentration is higher
compared to the reference data set (2.0 M versus 0.25 M),
the flow rate is higher and the cell temperature is lower,
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the resulting model predictions are more than satisfac-
tory. This is illustrated in Figs. 12 and 13 for the infer-
ential estimates. Similar behaviour was observed for the
one-step-ahead predictions (not shown).

Two data sets (E and F) were collected from the
three-cell stack. Due to the differences in cell design, a
separate CVA model was generated from data set (F)
and was validated against data set (E). The feed was a
1.0 M aqueous methanol solution for both experiments.
Flow, current and pressure distribution, gas and thermal
management, are problems that are less significant with
the small cell than the cell stack. Stack dynamics, espe-
cially heat and mass transfer processes, are also at least
an order of magnitude slower than the fast electrochemi-
cal processes taking place inside the membrane electrode
assembly (MEA). It should be noted that the DMFC
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Fig. 15. Inferential estimates of data set (E).

typically operates between 70 and 100°C and rarely is
operational at temperatures less than 60°C. Neverthe-
less, for automotive applications, a model for voltage
prediction should be able to predict voltages during
cold start-ups. The results plotted for data sets E and F
(Figs. 14—-16) demonstrate the ability of the model to
track changes between operating and loading conditions.
Another interesting feature is that the cell is continuously
loaded for prolonged time intervals and in general the
system is operated under unfavourable conditions. This
is exemplified by the ambient temperature being quite
low (5°C) and the stack being loaded without allowing
the membrane electrode assembly to reach a temperature
that will enhance the reaction kinetics.

From Table 2, the model predictions for data sets (E)
and (F) have accuracies in excess of 98% for both the in-
ferential and one-step-ahead predictions. The scatter plot



A. Simoglou et al. | Chemical Engineering Science 56 (2001) 6761-6772 6771

T T T T 1 T t

o e e ONIE-Step-Ahead Predictions
1000 b f S —— Actual Values [

900 [
800

700 [

Cell Voltage/ mV

600

500

400 1

1 1 1 1 1 1 L

2220 2240 2260 2280 2300 2320 2340

Time / sec

Fig. 16. One-step-ahead predictions of data set (E).

for data set (E) in Fig. 14 for the one-step-ahead predic-
tions confirms these good predictions as does the corre-
sponding plot for the inferential estimates (not shown).
Typical time-series plots are given in Fig. 15 for the infer-
ential estimates and Fig. 16 for the one-step-ahead pred-
ications for data set (E). Similar conclusions to those for
the response of the small cell can be drawn concerning
the ability of the three cell stack model to give good qual-
ity predictions irrespective of the large changes in system
operating conditions.

7. Conclusions

Overall this feasibility study has highlighted the poten-
tial of state space CVA dynamic modelling for fuel cell
voltage predictions. This investigation has revealed the
flexibility of the methodology for predicting, with good
accuracy, the voltage response of DMFC’s systems un-
der both steady state and dynamic conditions and with
changes in conditions during operation. One key issue is
that of obtaining the data set on which the model is to be
built. In the present study the data sets were generated
from experiments conducted as a general investigation
into the dynamic response of DMFC and hence these ex-
periments were not specifically designed for model build-
ing. It is conjectured that the accuracy of the models
would be significantly increased if data from specially
designed experiments had been used as the reference data
set.

It is generally accepted that the voltage response of a
fuel cell strongly depends on the applied current density
and to a lesser extent on variations in cell operating con-
ditions. Nevertheless, as fuel cell technology moves to-
wards large-scale systems and to wide variations in terms

of operating conditions, these characteristics need to be
incorporated within the CVA model structure to improve
accuracy. Two possible solutions are (i) to build a model
for a specific system from a large data set and achieve rel-
atively high accuracy predictions but with minimal sen-
sor requirements, and (ii) to increase model accuracy by
using more sensor information which implies penalties
in terms of increased cell instrumentation. An important
issue in state space CVA model development is the pre-
diction accuracy when CVA models developed from dif-
ferent systems are used to predict the voltage output of
scaled-up or scaled-down systems and multi-cell stacks.
This issue is addressed in the second part of this commu-
nication (Simoglou et al., 2001).
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